토니의 연습장
Model workflow 본문
1. Data (preparing and loading)
2. Build model
3. Train model
PyTorch training loop
PyTorch testing loop
4. Inference
# 1. Set the model in evaluation mode
model_0.eval()
# 2. Setup the inference mode context manager
with torch.inference_mode():
# 3. Make sure the calculations are done with the model and data on the same device
# in our case, we haven't setup device-agnostic code yet so our data and model are
# on the CPU by default.
# model_0.to(device)
# X_test = X_test.to(device)
y_preds = model_0(X_test)
y_preds
5. Saving and loading a PyTorch model
'AI 일반 > 모델, 아키텍처, 구현' 카테고리의 다른 글
LayerNorm 과 BatchNorm (1) | 2025.05.28 |
---|---|
causal mask (1) | 2025.05.28 |
loss 값 저장 및 출력 (5) | 2025.01.14 |
출력 정밀도 변환 클래스 정의 (CastOutputToFloat) (5) | 2024.11.14 |
Conv2d / ConvTranspose2d (0) | 2024.09.19 |